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after exposure (Wagner et al., 2012). Among dogs that are infected, only about 5% develop any clinical signs of Lyme dis-
ease (Levy & Magnarelli, 1992). The remaining dogs may either clear the infection without developing the disease or be
subclinically infected and never show symptoms. The routine Lyme disease testing done on dogs provides an opportunity
to measure the proportion of exposed dogs in the relatively healthy canine population that visits veterinary clinics and is
tested. This proportion is a prevalence based on serologic (blood) tests and is therefore called a seroprevalence (henceforth
shortened to prevalence). In this population, the national prevalence is about 6%, but county Lyme disease prevalence
can exceed 40% in some cases.

Monitoring prevalence is useful for many reasons. Prevalence indicate exposure risk within a region, allowing veterinar-
ians to provide effective preventative care and make testing recommendations. Indirectly, prevalence can help identify the
range of Ixodes spp. tick vectors. This is important because Ixodes spp. also transmit other pathogens, including Anaplasma
spp., Ehrlichia muris eauclairensis, and Babesia microti (Nelder et al., 2016), several of which are also zoonotic. The shared
tick vector and extensive testing data for dogs makes them a good sentinel for quantifying human Lyme disease risk.
In short, trends in dog prevalence should aid our understanding of Lyme disease risk changes for humans.

The goal of this paper is to identify U.S. regions that are experiencing increasing prevalence in dogs. Our data are
16,571,562 serologic B. burgdorferi tests conducted on domestic dogs in the conterminous United States (US) from January
2012 to December 2016, aggregated by county and month. Figure 1 displays the raw prevalence estimates (the proportion
of positive tests) after aggregating over all sixty months in this study. Data were reported from 69,876 county–month pairs.
To locate where prevalence is increasing, our model needs to have a spatially-varying temporal trend component. To make
reliable inferences, the strong positive spatio-temporal dependence of the tests needs to be taken into account. The size of
this data set and its large spatio-temporal support (about 3,100 distinct counties or county-equivalent regions) motivates
some of our methodological choices.

Gaussian processes (GPs) are popular geostatistical modeling tools due to their flexibility and ability to quantify
uncertainty in nonparametric regressions (Neal, 1998; O'Hagan, 1978). Good GP modeling overviews are provided in
Cressie (1993), Rasmussen and Williams (2006), Cressie and Wikle (2011), and Gelfand and Schliep (2016). Banerjee, Car-
lin, and Gelfand (2015) discussed Bayesian aspects of GPs. The objective prior specification for GP models is studied in the
work of Berger, de Oliveira, and Sansó (2001). GPs have become standard tools in a wide variety of applications, includ-
ing oceanography (Jona-Lasinio, Gelfand, & Jona-Lasinio, 2012), water quality analysis (Zhang & El-Shaarawi, 2009),
image classification (Morales-Álvarez, Pérez-Suay, Molina, & Camps-Valls, 2017), neuroimaging (Lazar, 2008), and com-
puter experiments (Santner, Williams, & Notz, 2003). GPs have also been previously used to model disease prevalence,
including dengue fever (Johnson et al., 2017), malaria (Andrade-Pacheco, Mubangizi, Quinn, & Lawrence, 2015), and
influenza (Senanayake, O'Callaghan, & Ramos, 2016). Gelfand, Kim, Sirmans, and Banerjee (2003) allowed GP linear
model coefficients to vary smoothly over space, an approach used here to allow for regional prevalence trends.

GP modifications and algorithms for analyzing big spatial data have received significant recent attention, including
fixed-rank kriging (Cressie & Johannesson, 2008) and LatticeKrig (Nychka, Bandyopadhyay, Hammerling, Lindgren, &
Sain, 2015). Both methods employ basis function expansions of spatial random effects to reduce the dimensions of the

FIGURE 1 Observed seroprevalence of Borrelia burgdorferi, aggregated over January 2012 to December 2016. White counties are those
that did not report any test results
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covariance matrices in the model. Katzfuss (2017) takes a similar approach, applying basis functions to a succession of
refined resolutions. Spatial partitioning (e.g., Heaton, Christensen, & Terres, 2017; Sang, Jun, & Huang, 2011) can be used
to split regions into smaller, more manageable subregions with computation being accelerated via a conditional inde-
pendence assumption. Covariance tapering (Furrer, Genton, & Nychka, 2006) uses a covariance structure with compact
support to induce sparsity. Nearest-neighbor processes (Datta, Banerjee, Finley, & Gelfand, 2016) achieve computational
efficiency by conditioning on a subset of nearby observations. A similar idea is used by Gramacy and Apley (2015) to
find the largest number of neighbors that are computationally feasible for prediction, optimally chosen by minimizing
a prediction variance. Heaton et al. (2017) provided an overview and comparison of these and other procedures. Our
approach involves Gaussian predictive processes (GPPs; Banerjee, Gelfand, Finley, & Sang, 2008) and is discussed further
in Section 2.

The most common approach for modeling spatially dependent areal data involves Gaussian Markov random fields
(GMRFs; Rue & Held, 2005), with Gaussian conditional autoregressive (CAR) models (Banerjee et al., 2015) being partic-
ularly popular. As special cases of Markov random fields (Besag, 1974), GMRFs are collections of jointly distributed Gaus-
sian variables satisfying a Markov dependence structure quantified through a precision matrix. GMRFs are extended to
flexible degrees of smoothness in the works of Brezger, Fahrmeir, and Hennerfeind (2007) and Yue and Speckman (2010).
Brown, Datta, and Lazar (2017) adjusted the CAR precision matrix to build a unified model for independent and
dependent cases and study neighborhood structures other than those based on physical adjacency. GMRF and GP con-
nections are explored in the works of Rue and Tjemland (2002), Song, Fuentes, and Ghosh (2008), and Lindgren, Rue,
and Lindström (2011). CAR models are by now standard in disease mapping problems (e.g., Waller, Carlin, Xia, &
Gelfand, 1997).

To achieve our goals, a large-scale spatio-temporal binomial regression model is developed that has both GPP and
CAR components. The former is used to capture regionally varying trends by treating the trend coefficient as a non-
parametric surface over space, whereas the latter accounts for local heterogeneity. Through data augmentation steps and
a novel sampling strategy, a modeling framework is developed that is computationally scalable to large non-Gaussian
spatio-temporal data sets. In particular, straightforward Gibbs sampling is facilitated via a data augmentation step involv-
ing latent Pólya-gamma variables. To avoid computationally expensive matrix calculations, a chromatic sampling strategy
is used in our Gibbs sampler. Our methodology easily handles missing data. The finite sample properties of our approach
are studied via simulation before our Lyme disease analysis is conducted.

The remainder of this paper is organized as follows. Section 2 describes the model and our GPP and CAR structures.
Section 3 discusses model fitting procedures, emphasizing computational tractability with large spatio-temporal data.
Section 4 presents a simulation study supporting our approach and Section 5 analyzes the canine serology data described
above. Concluding remarks are offered in Section 6.

2 MODELING METHODS

Let Yst denote the number of cases (e.g., positive B. burgdorferi tests) observed in nst tests taken in region s at time t,
for s = 1, … , S and t = 1, … ,T. Set Y s = (Ys1, … ,YsT)′, Y = (Y ′

1, … ,Y ′
S)

′ ∈ RST , ns = (ns1, … ,nsT)′, and n =
(n′

1, … ,n′
S)

′ ∈ NST . In addition to the disease tests, the covariates Zstq and Xstp, for q = 1, … ,Q and p = 1, … ,P, are
assumed available in region s at time t. The Zstq are covariates whose effects are constant over the study area, whereas Xstq
are covariates whose associated effects vary by region.

To relate the observed test data to the covariates, a Bayesian generalized linear mixed model (Banerjee et al., 2015;
Diggle, Tawn, & Moyeed, 1998; McCullagh & Nelder, 1989) is adopted. Our general model is the binomial regression:
Yst|nst, pst ∼ Binomial(nst, pst) with

𝜈st ∶= g−1(pst) = Z′
st𝜹 + X ′

st𝜷(𝓵s) + 𝜉st; s = 1, … , S; t = 1, … ,T, (1)

where g ∶ R → (0, 1) is a known link function (e.g., logistic) relating the linear predictor 𝜈st to the prevalence pst,
Zst = (1,Zst1, … ,ZstQ)′ ∈ RQ+1, X st = (Xst1, … ,XstP)′ ∈ RP, 𝜹 = (𝛿0, … , 𝛿Q)′ are global regression coefficients,
𝜷(·) = (𝛽1(·), … , 𝛽P(·))′ are spatially varying regression coefficients, 𝓵s = (𝓁s1,𝓁s2)′ is a vector of spatial coordinates
(e.g., latitude and longitude) that identifies the centroid of region s, and 𝜉st is a spatio-temporal random effect. Following
the work of Gelfand et al. (2003), the spatially varying regression coefficients are regarded as unknown smooth surfaces
over the study region. To model these unknown surfaces while maintaining computational tractability, GPPs are used.



4 of 17 SELF ET AL.

A GP is a stochastic process whose finite dimensional distributions are multivariate normal. A GP 𝜷p(·), given a
covariance parameter 𝜽p and denoted

𝜷p | 𝜽p ∼  (
𝜇p(·),C(·, ·;𝜽p)

)
,

is uniquely determined by its mean and covariance, 𝜇p(𝓵s) ∶ = E[𝛽p(𝓵s)] and C(𝓵s,𝓵s′ ;𝜽p) ∶= Cov(𝛽p(𝓵s), 𝛽p(𝓵s′ )) =
𝜎2

p𝜌p(𝓵s,𝓵s′ ;𝜽p), where 𝜌p(·, ·;𝜽p) is a correlation function depending on 𝜽p. For smoothing and interpolation, a con-
stant mean is often assumed (Bayarri et al., 2007). Our work a priori posits that 𝜇p(·) ≡ 0 for all p. Thus, 𝜷p =
(𝛽p(𝓵1), … , 𝛽p(𝓵S))

′ , S ∈ N, follows a multivariate normal distribution with mean 0 and covariance matrix Cp = 𝜎2
pRp,

where (Rp)ss′ = 𝜌p(𝓵s,𝓵s′ ;𝜽p). In general, the covariance matrix inversions and factorizations needed to calculate quan-
tities in our posterior distributions are (S3) in computational time. In Markov chain Monte Carlo (MCMC) algorithms,
these operations will need to be repeated thousands of times. Thus, as S grows large, GPs quickly become computationally
unwieldy.

To reduce the dimension of the problem, our GPP employs a “parent” process based on a strategically chosen set
of knots and interpolates to points of interest via kriging. Let {𝓵∗

1, … ,𝓵∗
S∗

p
} denote the knot set with S∗

p ≪ S. Define

𝜷∗
p = (𝛽p(𝓵∗

1), … , 𝛽p(𝓵∗
S∗

p
))′ and note that 𝜷∗

p|𝜎2
p ,𝜽p

ind∼ N(0,C∗
p), for all p, where C∗

p = 𝜎2
pR∗

p and (R∗
p)ss′ = 𝜌p(𝓵∗

s ,𝓵∗
s′ ;𝜽p).

The GPP simply replaces 𝜷p with 𝜷̃p ∶= E(𝜷p|𝜷∗
p;𝜽p) = R̃∗

p(R∗
p)−1𝜷∗

p, where R̃∗
p is an S × S∗

p matrix whose (s,s′)th
element is 𝜌p(𝓵s,𝓵∗

s′ ;𝜽p). When S∗
p is not large, (R∗

p)−1 can be quickly computed. For more on GPPs, see the work of
Banerjee et al. (2008).

Fully specifying a GPP requires specifying its knot locations. Banerjee et al. (2008) discussed several methods of knot
selection, including placing them on a regular grid, selecting them at random from the observation locations, and methods
that place more knots in areas with more observations. Finley, Sang, Banerjee, and Gelfand (2009) suggested choosing
knot locations to minimize conditional variances at observation locations. Guhaniyogi, Finley, Banerjee, and Gelfand
(2011) proposed an adaptive knot selection strategy where knot locations are treated as a point process. Following the
work of Eidsvik, Finley, Banerjee, and Rue (2012), our knots are chosen via K-means clustering with S∗

p clusters; that is,
using K-means clustering, the S counties are partitioned into S∗

p clusters based on their locations 𝓵s. The knot locations
are taken as the centroids of the S∗

p clusters. For further details on K-means clustering, see the work of Hartigan and
Wong (1979).

A variety of ways exist to model spatio-temporal dependence of areal data. Some commonly used methods include
intrinsic CAR models, proper CAR models, and the so-called Besag-York-Mollie models for disease mapping prob-
lems. These methods can be extended to handle spatio-temporal correlation in many ways. For examples, a separate
Besag-York-Mollie model can be fit at each time point (Knorr-Held & Besag, 1998; Waller et al., 1997), or a CAR model
can be combined with a random walk in time (Knorr-Held & Besag, 1998), a spline-based temporal structure (MacNab &
Dean, 2001) or a local autoregressive model in time (Congdon & Southall, 2005). For a thorough review and comparison
of existing spatio-temporal models, see the work of Anderson and Ryan (2017). A county-by-county exploratory analy-
sis of our Lyme disease data suggests that a first-order autoregressive (AR(1)) model is sufficient for handling temporal
dependence. Thus, following the work of Rushworth, Lee, and Mitchell (2014) and Lee and Lawson (2014), first-order
vector autoregression is used with GMRF errors:

𝝃t = 𝜁𝝃t−1 + 𝝓t, (2)

where 𝝃t = (𝜉1t, … , 𝜉St)′, 𝜁 ∈ (− 1, 1) is a parameter controlling temporal correlation, and 𝝃0 = 0 is taken as a starting
condition. We assume the𝝓t's to be independent and identically distributed as a proper intrinsically autoregressive model
(Besag & Kooperberg, 1995); that is, 𝝓t ∼ N(0, 𝜏2(D − 𝜔W)−1), where 𝜏2 > 0 and 𝜔 ∈ (0, 1) is a so-called “propriety
parameter” that ensures that the precision matrix is nonsingular (Banerjee et al., 2015). The neighborhood matrix W ∈
RS×S is such that (W)ss′ is equal to 1 if and only if location s is adjacent to location s′, s ≠ s′, zero otherwise, and

D = diag

( S∑
𝑗=1

(W)s𝑗 , s = 1, … , S

)
.

To avoid confounding with the intercept, the standard sum-to-zero constraint
T∑

t=1

S∑
s=1
𝜉st = 0

is imposed.
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The proposed model is completed by specifying prior distributions on the regression coefficients and the variance and
correlation parameters. In the absence of strong prior information, hyperparameters are chosen to induce vague prior
distributions. A Gaussian prior is assumed for the global regression coefficients, and inverse gamma (IG) priors are placed
on variance components. A truncated Gaussian prior with support ( − 1, 1) is specified for 𝜁 . A Beta(𝛼𝜔, 𝜐𝜔) prior is placed
on 𝜔 to concentrate it close to unity, because previous empirical work has shown that 𝜔 ≈ 1 is necessary to induce
noticeable spatial association (Banerjee et al., 2015). These specifications lead to the following hierarchy:

Yst|nst, 𝜈st
indep.∼ Binomial (nst, pst = g(𝜈st)) , s = 1, … , S; t = 1, … ,T;

𝜷∗
p|𝜎2

p ,𝜽p
indep.∼ N

(
0, 𝜎2

pR∗
p(𝜽p)

)
, p = 1, … ,P;

𝜎2
p

indep.∼ IG
(
𝛼𝜎2

p
, 𝜐𝜎2

p

)
, p = 1, … ,P;

𝜽p
i.i.d.∼ 𝜋(𝜽p), p = 1, … ,P;

𝜹 ∼ N
(
0, 𝜎2

𝛿
I
)
, 𝜎2

𝛿
> 0;

𝝃t|𝝃t−1, 𝜏
2, 𝜔, 𝜁 ∼ N

(
𝜁𝝃t−1, 𝜏

2(D − 𝜔W)−1) , t = 1, … ,T;
𝜏2 ∼ IG(𝛼𝜏2 , 𝜐𝜏2), 𝛼𝜏2 , 𝜐𝜏2 > 0;
𝜔 ∼ Beta(𝛼𝜔, 𝜐𝜔), 𝛼𝜔, 𝜐𝜔 > 0;

𝜁 ∼ Truncated-Normal
(

0, 𝜎2
𝜁
,−1, 1

)
, 𝜎2

𝜁
> 0,

(3)

where 𝜈st = Z′
st𝜹+X ′

st𝜷(𝓵s)+ 𝜉st, 𝜷(𝓵s) = (𝛽1(𝓵s), … , 𝛽P(𝓵s))′, and 𝝃0 = 0. Each coefficient in 𝜷(𝓵s) is obtained from the P
predictive processes via 𝜷p = R̃

∗
p(R∗

p)−1𝜷∗
p. Appropriate (identical) priors for 𝜽1, … ,𝜽P depend on the correlation function

selected in the GPP model.
While the combination of a continuous support GPP and a discrete support GMRF has not been extensively used previ-

ously, it is motivated in our application. Because the 𝜷𝓁 coefficients contain trends that are thought to vary smoothly over
space, we appeal to GPP models because an explicit covariance function allows for the direct imposition of smoothness
assumptions and a meaningful prediction function through kriging—the latter is useful for estimating seroprevalence
trends at unobserved locations. The spatio-temporal random effects, on the other hand, are of secondary interest and serve
only to smooth the extraregression variability beyond that explained by the predictors. Because they are defined over an
areal lattice, a CAR model is a natural choice. In Web Appendix B, we consider replacing the GPP with a CAR model on
the regression coefficients and empirically study the results via simulation. We find that the GPP model is able to produce
reliable estimates of both “regional” and “local” trends, whereas the CAR model only estimates local trends. Because both
models reliably estimate local trends and the GPP model can also accurately estimate regional trends, the GPP model is
used. For further discussion of local and regional trends, including the differences between them, see Section 5 and Web
Appendix B.

3 POSTERIOR SAMPLING

3.1 Data augmentation
We assume conditional independence given the covariate effects and spatio-temporal effects and observe that Y depends
on the regression coefficients and random effects only through 𝝂 = (𝜈11, … , 𝜈1T, 𝜈21, … , 𝜈ST)′. Hence, the likelihood is

𝑓 (Y |𝝂) ∝ T∏
t=1

S∏
s=1

g(𝜈st)Yst{1 − g(𝜈st)}nst−Yst . (4)

To develop a posterior sampling algorithm, let g(·) be the logistic link. Other link functions are possible and can be imple-
mented following the work of Albert and Chib (1993) or Gamerman (1997). Metropolis–Hastings steps (Hastings, 1970;
Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953) can be used either component-wise or in blocks, but such
samplers can be difficult to tune in high dimensions. To facilitate the derivation of a Gibbs sampler for the regression coef-
ficients and spatio-temporal random effects, a data augmentation scheme is used that leads to sampling these parameters
from Gaussian full conditional distributions.
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Our data augmentation approach follows the work of Polson, Scott, and Windle (2013) and relies on the fact that
exp (𝜈)a{1 + exp(𝜈)}−b = 2−b exp(𝜅𝜈) ∫ ∞

0 exp(−𝜓𝜈2∕2) p(𝜓|b, 0)d𝜓 , where a ∈ R, b ∈ R+, 𝜅 = a − b∕2, and p(· |b, 0)
is the probability density function of a Pólya-gamma random variable with parameters b and 0. From these, under the
logistic link, (4) can be written as

𝑓 (Y |𝝂) ∝ T∏
t=1

S∏
s=1

exp(𝜅st𝜈st)∫
∞

0
exp

(
−𝜓st𝜈

2
st∕2

)
p(𝜓st|nst, 0)d𝜓st

∝
T∏

t=1

S∏
s=1 ∫

∞

0
𝑓Y ,𝜓 (Yst, 𝜓st|𝜈st)d𝜓st,

where 𝜅st = Yst − nst∕2 and fY,𝜓 is the joint density of (Yst, 𝜓 st). By introducing the 𝜓 st as latent random variables to be
sampled via MCMC, we obtain

𝑓Y ,𝝍 (Y ,𝝍 | 𝝂) ∝ exp
(
−𝝂′D𝝍𝝂∕2 + 𝜿′𝝂

) T∏
t=1

S∏
s=1

p(𝜓st|nst, 0),

where 𝝍 = (𝜓11, … , 𝜓1T, 𝜓21, … , 𝜓ST)′, D𝝍 = diag(𝝍), and 𝜿 = (𝜅11, … , 𝜅1T, 𝜅21, … , 𝜅ST)′. Hence, data augmenta-
tion yields a Gaussian density in 𝝂 up to a normalizing constant. Consequently, the full conditional distributions for most
parameters take a known form and are easy to sample. For specifics, the full conditional distribution of𝜓 st is Pólya-gamma,
𝜷∗

p is multivariate normal, 𝜹 is multivariate normal, 𝜎2
p is IG, 𝜏2 is IG, and 𝜁 is truncated normal. Web Appendix A provides

additional conditional distributions.
From the data augmentation, a posterior sampling algorithm involving Gibbs steps for the above parameters can be

constructed in the usual manner. Metropolis–Hastings steps are used to sample each 𝜽p and 𝜔. While the full conditional
distribution of 𝝃t is multivariate normal, sampling from this high-dimensional distribution is computationally expensive.
For more efficient repeated updates of 𝝃t, the Markov structure of the CAR model is exploited to construct a chromatic
sampler that updates conditionally independent blocks of 𝝃t in parallel. For further discussion, see the works of Gonzalez,
Low, Gretton, and Guestrin (2011) and Brown, McMahan, and Watson (2017).

3.2 A note on missing data
In our application, data are not reported at all county–month pairs. To account for this, let  be the set of all ordered pairs
(s, t) for which tests are observed. The augmented likelihood is

𝑓 (Y (),𝝍() | 𝝂()) ∝ exp
(
−𝝂()′D𝝍()𝝂()∕2 + 𝜿()′𝝂()

) ∏
(s,t)∈

p(𝜓st|nst, 0),

where 𝝂() = Z()𝜹 + X()b̃ + I()𝝃 and the convention that A() is the matrix formed by retaining the rows of A
whose indices are in  is used. Here, Z = (Z′

1, … ,Z′
S)

′ ∈ RST×(Q+1) with Zs = (Zs1, … ,ZsT)′. Similarly, X =
⨁S

s=1 X s ∈
RST×SP with Xs = (Xs1, … ,XsT)′, I is the identity matrix, and b̃ = (𝜷

′
(𝓵1), … ,𝜷

′
(𝓵S))′ ∈ RSP. Because 𝝃 ∈ RST is the

vector of spatial random effects over all locations within the study region for all time points, a well-defined full condi-
tional distribution for 𝝃 is obtained, provided that the prior on 𝝃 is proper. This joint density representation permits the
imputation of any missing effects via posterior realizations.

4 A SIMULATION STUDY

This section studies via simulation how well our methods estimate model coefficients and how GPP knot selection influ-
ences results. Data were generated on a regularly spaced S × S grid over 60 time points, where S = 13, and then drawing
Yst|nst, pst

indep.∼ Binomial(nst, pst) observations, where

g−1(pst) = 𝛿0 + 𝛽1(𝓵s)t∕60 + 𝜉st, s = 1, … , S2; t = 1, … , 60,

and g(·) is the logistic link. The test counts nst were randomly sampled from a discrete uniform distribution ranging from
100 to 200. The random effects 𝜉st are generated from the CAR model defined in Section 2 with 𝜁 = 0.9, 𝜏2 = 0.005, 𝜔 ∈
{0.00, 0.55, 0.90}, and a neighborhood matrix W set so that two areas are neighbors if and only if they share a common
edge or corner. The 𝜔 values 0.00, 0.55, and 0.90 correspond to no, weak, and strong spatial dependence, respectively.
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FIGURE 2 The true 𝜷1 surface used to generate the independent data sets in the simulation example

The true intercept was set to 𝛿0 = −1 and the surface 𝜷1(·) at each study location is generated from the GPP model in
(3). Specifically, a realization of the parent process is first simulated on a 5 × 5 grid of equally spaced knots. The parent
process took 𝜇1(𝓵∗

s ) ≡ 1 and 𝜌(𝓵∗
s ,𝓵∗

s′ ; 𝜃1) = 𝜃
d2

ss′

1 , where dss′ is the Euclidean distance between 𝓵∗
s and 𝓵∗

s′ , 𝜃1 = 0.6, and
𝜎2

1 = 1.5. The resulting 𝜷1(·) is depicted in Figure 2. Using this surface, 500 independent data sets were generated from
the model for each 𝜔.

Our model was fit to each data set using three separate knot set configurations. The first configuration uses the same
knots as those generating the true surface, representing an ideal situation. The other two configurations take 4 × 4 and
7 × 7 grids of equally spaced knots. For priors in (3), we take 𝛼𝜎2

1
= 𝜐𝜎2

1
= 𝛼𝜏2 = 𝜐𝜏2 = 2, 𝜎2

𝛿
= 1, 000, 𝛼𝜔 = 900,

𝜐𝜔 = 100, and 𝜎2
𝜁
= 10. In the GPP, the correlation function was taken as 𝜌(𝓵s,𝓵s′ ; 𝜃1) = 𝜃

d2
s,s′

1 , the same as the true GPP. A
Uniform(0,1) prior on 𝜃1 was used. For each data set, 5,000 MCMC iterates are retained after a burn-in of 5,000 samples.
Convergence of the chains was assessed via trace plots and judged to be acceptable.

Figure 3 summarizes our results for the temporal trend parameter𝜷1(·)when𝜔 = 0.90. This includes a spatial depiction
of the arithmetic average of the 500 point estimates, as well as empirical biases and mean squared errors. Here, for each
data set, a point estimate of 𝜷1(·)was obtained as the mean of the 5,000 retained MCMC iterates. Web Figure 1 summarizes
results for the other𝜔 values. The methods estimate the spatially varying regression coefficient well for every considered𝜔;
that is, the mean estimates show little bias and have a relatively small mean squared error. Estimator variability increases
near the region's edges—this boundary effect is expected and is common in nonparametric regressions. Figure 3 shows
little practical difference for the estimates obtained under the three different knot configurations, suggesting that the
methods can recover the true coefficient surface across the entire study region (assuming the model is correct up to choice
of knots).

Two additional simulations were conducted. The first simulation examined the performance of the proposed method-
ology in the presence of missing data. The second study examined the effects of increasing spatial dimension. Results for
these are presented in Web Appendix B. The results indicate that the proposed methodology performs well in these more
challenging situations.

5 LYME DISEASE ANALYSIS

5.1 Background
Our data contain 16,571,562 tests on domestic dogs living throughout the conterminous United States from January 2012
to December 2016. The data were provided by IDEXX Laboratories, Inc. to the Companion Animal Parasite Council
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FIGURE 3 Summary of the posterior estimates of 𝜷1 obtained in the simulation example when 𝜔 = 0.90. Presented results include the
sample mean of the (top row) posterior estimates, (middle row) empirical bias, and (bottom row) empirical mean squared error. From left to
right, the columns correspond to the use of 4 × 4, 5 × 5, and 7 × 7 grids of knots

(CAPC), who made them available online at https://www.capcvet.org. The data are aggregated by month and county;
69,876 county–month pairs report at least one test.

In general, the spatial distribution of a vector-borne disease is strongly influenced by regional environments and the
vector's hosts (e.g., deer populations), leading to correlated data (Legendre, 1993). A strong spatial correlation is seen in
these data, as indicated by Figure 1 and a Moran's I statistic of 0.378 (p value ≈ 0). Such data are also positively temporally
correlated. Figure 4 displays raw county-level prevalence estimates aggregated over all 12 months in the two years of
2012 and 2016. A comparison of these graphics suggests where a significant increase in prevalence is expected, including
Western Pennsylvania, Virginia, West Virginia, Minnesota, and Iowa.

5.2 Model building and seasonality
As an exploratory step, a county-by-county time series analysis of prevalence was conducted for 672 counties report-
ing a sufficient amount of data; that is, counties reporting 10 or more positive tests each month. Following the work of
Dunsmuir and Scott (2015), a binomial generalized linear model with only a linear time trend (on the logit scale) was
fit to each county's time series. The partial autocorrelations of the Pearson residuals were used to assess autoregressive

https://www.capcvet.org
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FIGURE 4 Raw reported canine seroprevalences in (top) 2012 and (bottom) 2016. White counties did not report any tests

orders in the usual manner. From this analysis, an AR(1) model was deemed reasonable for most counties. Next, a gener-
alized linear AR(1) model with the mean structure described above was fit to each county. Histograms of the probability
integral transformations were constructed and used to assess the suitability of the AR(1) model. These results support an
AR(1) model to account for temporal dependence, providing justification for the form taken in (2). For more details on
this analysis, see Web Appendix C.

Given the seasonality of tick activity, seasonality could also be present in Lyme disease prevalence. Though no strong
evidence of seasonality surfaced in our exploratory analysis, a more thorough investigation of seasonality was conducted
by fitting the model

𝜈st = 𝛿0 + 𝛽1(𝓵s)I1(t) + 𝛽2(𝓵s)I2(t) + 𝛽3(𝓵s)I3(t) + 𝛽4(𝓵s)t + 𝜉st, (5)

where t denotes time (rescaled to the unit interval) and Ip(t) is a seasonal indicator for p = 1, 2, 3. Seasons are defined as
follows: Winter (December–February), Spring (March–May), Summer (June–August), and Fall (September–November),
where winter is regarded as the baseline. This model allows for spatially varying seasonal effects and spatially varying
trend effects. While covariates such as county-level temperatures and precipitations are available, these are not used in
this fit because our goal is to quantify trends, not determine the specific drivers of these trends.

Model (5) was fit with the prior specifications and correlation functions described in Section 4. Two specifications for
the GPP model were considered, using 50 and 100 knots, respectively. In both cases, knot placement for all GPP models
was done by K-means clustering. For sampling, 30,000 MCMC iterates were generated, with the last 10,000 being retained
for inference. Convergence of the MCMC chains was assessed using trace plots. We stress the computational scalability of
this approach. This model contains four a priori independent coefficient surfaces, each replete with 3,109 spatial locations
and 186,540 spatio-temporal random effects.
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Two primary findings arise. First, there are no appreciable differences between the estimates using 50 and 100 knots.
As both specifications are computationally feasible, all subsequent analyses used 100 knots. Second, there is evidence of
seasonality in the location parameters, but these appear constant across space. In particular, Figure 5 depicts 95% credible

FIGURE 5 A summary of the spatially varying seasonal effects estimate from (5), that is, estimates (ordered from smallest to largest) of
(left panel) 𝛽1, (center panel) 𝛽2, and (right panel) 𝛽3. Included are the posterior mean and the upper and lower endpoints of 95% credible
intervals. The red horizontal line is included to demonstrate that all of the credible intervals contain the same constant, thus indicating that a
constant seasonal effect might be appropriate

FIGURE 6 Estimate of the regional trend 𝜷1 from the (top) seasonal model (7) and (bottom) nonseasonal model (8) used to analyze the
seroprevalence data
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intervals for each county-level seasonal effect. These intervals all contain a common nonzero value, indicating that a
spatially constant seasonal effect is reasonable. Thus, the simpler model

𝜈st = 𝛿0 + 𝛿1I1(t) + 𝛿2I2(t) + 𝛿3I3(t) + 𝛽1(𝓵s)t + 𝜉st (6)

was considered. Credible intervals at level 95% indicate that the model can be further reduced to

𝜈st = 𝛿0 + 𝛿1I∗1 (t) + 𝛽1(𝓵s)t + 𝜉st, (7)

where I∗1 (t) is a seasonal indicator that equals one if t is between March and November, and zero otherwise. Approximate
95% credible intervals for 𝛿0 and 𝛿1 are [−3.95,−3.82] and [− 0.20,− 0.10], respectively.

For further insight, the model in (7) was compared with the nonseasonal model

𝜈st = 𝛿0 + 𝛽1(𝓵s)t + 𝜉st. (8)

For this model, an approximate 95% credible interval for 𝛿0 is [− 4.08,− 4.03]. Figure 6 displays estimates of 𝛽1(·) from
both models. Very similar large-scale patterns in the estimated trends are seen. In short, while seasonality exists in the
location parameters, its effect on trends seems negligible.

FIGURE 7 County-level trends. The top graphic displays the posterior mean estimate of 𝜐s from model (7), and the bottom, from model (8)
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The temporal trend surface 𝜷 represents a regional effect estimated at a particular area by incorporating information
from a relatively large swath of surrounding areas. While regional trends are useful for estimating trends in areas with
few tests, it may be desirable to separate local effects from regional trends to provide a county-level assessment. Web
Appendix B demonstrates how our modeling framework facilitates such a separation. Specifically, county-specific trends
are estimated as follows. Let 𝜐(g)s be the least-squares estimate of the county s slope obtained at by fitting a simple linear
regression to {(t, 𝜈(g)st ) ∶ t = 1, … ,T}, where 𝜈(g)st is the gth posterior draw of 𝜈st obtained from the MCMC output. Then,
𝜐
(g)
s can be regarded as a realization of the linear time trend at county s. Using the {𝜐(g)s } as a random sample from the

marginal posterior distribution of 𝜐s, point estimates and inferences can be obtained for county-level trends.

FIGURE 8 Counties where 𝜐s was significantly positive at the 95 % confidence level. The top graphic corresponds to model (7), and
bottom, to model (8)
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5.3 Results
Figure 6 displays the estimated posterior mean of the regional temporal trend surface 𝜷1. The regional rate of change in
prevalence between January 2012 and December 2016 is positive in all states that are currently recognized as having high
human Lyme disease incidence (Centers for Disease Control and Prevention, 2017), including portions of the Northeast
and the Upper Midwest. The rate of increase varies by region, with high-incidence regions generally exhibiting the greatest
changes. These regions include Maine, West Virginia, Virginia, and the northern parts of Minnesota and Wisconsin.

Figure 7 displays estimated posterior means of the county-level trends 𝜐s, s = 1, … , 3,109. Figure 8 shows counties
where local trends are significantly positive, assessed using approximate 95% equal-tailed credible intervals. Increasing
local trends are seen in much of the Northeast, extending southwards through West Virginia and Virginia, and into North
Carolina and Tennessee. This region includes localities where Lyme disease is reportedly increasing. Increasing local
trends in parts of Northwestern Minnesota, Northern Wisconsin, and Southeastern Iowa are also apparent. In the Great
Lakes region, increasing trends are observed in Eastern Ohio, Indiana, and Western Michigan. In much of eastern New
England, where human Lyme disease was first recognized, the prevalence appears stable, albeit high.

6 DISCUSSION

This paper developed a computationally feasible binomial regression model for large spatio-temporal data that can iden-
tify localized trends. Our novel approach combined several recent advances in large-scale spatial modeling and MCMC
sampling. The end product is a flexible scalable methodology for modern spatio-temporally referenced count data.

Our proposed approach was used to identify regions of the U.S. experiencing increasing canine Lyme disease risk.
Because human and canine risks are similar, such regions are likely also experiencing increasing human exposure.
While human Lyme disease data may not be publicly available and, in many regions, scarce due to lack of testing,
our canine prevalence data had over 16 million tests. The size of the spatial domain created computational challenges.
While monthly and county-level aggregation reduced the size of the response vector from 16,581,562 tests to 69,876
county–month pairs, a binomial response in an MCMC context typically requires sampling via Metropolis–Hastings
steps, which can be difficult to tune in extremely high dimensions (over 180,000, in our case). Under the logistic link,
a recently proposed Polyá-Gamma data augmentation was used to facilitate direct Gibbs sampling on full conditional
distributions. GPPs were used to model smoothly varying high-dimensional coefficients through a low-dimensional
representation. Local spatio-temporal heterogeneity was captured by random effects following a time-varying Gaus-
sian CAR distribution. Chromatic sampling was used to facilitate efficient updating of the GMRFs in our MCMC
algorithm.

This study was motivated by the rise in Lyme disease cases in the United States (Adams et al., 2017) and, in par-
ticular, rising incidence in states not traditionally considered endemic. Our results suggest that (1) canine prevalence
is rising in tandem with human cases (Centers for Disease Control and Prevention, 2017; Hendricks & Mark-Carew,
2017; Kugeler, Farley, Forrester, & Mead, 2015), (2) prevalences are increasing most in areas where the pathogen has
recently encroached, and (3) prevalence in dogs is rising in states traditionally not considered to be of high inci-
dence for humans (Centers for Disease Control and Prevention, 2017), suggesting that human risk is also increasing
in these areas. Several recent studies have recognized increasing risk in traditionally low incidence areas. These areas
include Illinois (Herrmann, Dahm, Ruiz, & Brown, 2014), Iowa (Lingren, Rowley, Thompson, & Gilchrist, 2005), North
Dakota (Russart, Dougherty, & Vaughan, 2014), Ohio (Wang et al., 2014), and Michigan (Lantos et al., 2017). Signifi-
cant increases in canine prevalence are also seen in some areas that have not yet reported significant human incidence.
Given the proximity of these locations to recognized high-incidence areas, it is reasonable to infer that canine preva-
lence is more sensitive to changes and can be used as an early warning system to signal changes in human risk. West
Virginia, Western Pennsylvania, and Eastern Ohio are such areas and can be viewed as a leading edge of rising preva-
lence in Lyme disease's westward expansion. This is supported by evidence in increased reports of ticks in these regions
(Eisen, Eisen, & Beard, 2016).

Examining local, as opposed to regional, trends shows that some adjacent counties have trends in opposite directions.
To fully understand this heterogeneity, further ecological analyses are needed. Possible factors to consider include the
presence of urban centers, degree of forestation or other habitat factors, tick populations, reservoir presence and densities,
vaccination, and preventative medication use. Medication use is likely driven by socioeconomic factors, whereas the other
factors are related to climate or changing habitats.
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Our approach made several simplifying assumptions. The link function in the model was treated as known, which
might be a strong assumption. As poorly specified link functions can induce bias in the estimates of the covariate effects
(Neuhaus, 1999), relaxing this assumption could be fruitful. We also assumed that the spatially varying coefficients
followed independent and identically distributed GPs. A more flexible approach would allow these coefficients to be cor-
related through a multivariate GP (Ver Hoef & Barry, 1998); however, multivariate GPs are more difficult to use and
challenges remain in their development (e.g., Fricker, Oakley, & Urban, 2013). The observed prevalence rates suggest that
smoothness of the random effects may change by region, suggesting that a heteroskedastic GP might be more appropriate
(Binois, Gramacy, & Ludkovski, 2016). Further, GMRFs are known to oversmooth salient features (Smith & Fahrmeir,
2007). However, approximating GPs with GMRFs via stochastic partial differential equations to maintain computational
feasibility (Lindgren et al., 2011) could prove promising for our application.

In addition to statistical challenges, future applications of our model include human Lyme disease and heartworm
disease, ehrlichiosis, and anaplasmosis in dogs. The ecological, entomological, and environmental implications of the
canine prevalence analysis presented here is the subject of ongoing research.
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SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.
The supplementary material includes three web appendices. Web Appendix A provides the full conditional distributions

required to develop the proposed sampling procedure, Web Appendix B provides additional simulation results, and Web
Appendix C provides details about the exploratory data analysis conducted in Section 5.2.

How to cite this article: Self SCW, McMahan CS, Brown DA, Lund RB, Gettings JR, Yabsley MJ. A large-scale
spatio-temporal binomial regression model for estimating seroprevalence trends. Environmetrics. 2018;29:e2538.
https://doi.org/10.1002/env.2538

https://doi.org/10.1002/env.2538
https://doi.org/10.1002/env.2538

	1 Self_et_al-2018-Environmetrics (2)
	Self_et_al-2018-Environmetrics
	A large-scale spatio-temporal binomial regression model for estimating seroprevalence trends
	Abstract
	INTRODUCTION
	MODELING METHODS
	POSTERIOR SAMPLING
	Data augmentation
	A note on missing data

	A SIMULATION STUDY
	LYME DISEASE ANALYSIS
	Background
	Model building and seasonality
	Results

	DISCUSSION
	REFERENCES



